
Conditionally Specified Bivariate Kummer-Gamma Distribution
DAYA K. NAGAR, EDWIN ZARRAZOLA AND ALEJANDRO ROLDÁN-CORREA

Instituto de Matemáticas
Universidad de Antioquia

Calle 67, No. 53–108, Medellín
COLOMBIA

Abstract: - The Kummer-gamma distribution is an extension of gamma distribution and for certain values of parameters
slides to a bimodal distribution. In this article, we introduce a bivariate distribution with Kummer-gamma conditionals
and call it the conditionally specified bivariate Kummer-gamma distribution/bivariate Kummer-gamma conditionals dis-
tribution. Various representations are derived for its product moments, marginal densities, marginal moments, conditional
densities, and conditional moments. We also discuss several important properties including, entropies, distributions of sum,
and quotient. Most of these representations involve special functions such as the Gauss and the confluent hypergeometric
functions. The bivariate Kummer-gamma conditionals distribution studied in this article may serve as an alternative to
many existing bivariate models with support on (0,∞)× (0,∞).
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1 Introduction
There are several bivariate distributions proposed in the
statistical literature, see Arnold, Castillo and Sarabia [1],
Balakrishnan and Lai [2], Kotz, Balakrishnan and John-
son [3], Hutchinson and Lai [4], and Mardia [5] for good
reviews. For more recent work, the reader is referred
to Bran-Cardona, Orozco-Castañeda and Nagar [6], Bak-
ouch et al. [7], Bondesson [8], Chen, Tzeng and Lin [9],
Franco, Vivo and Kundu [10], Ghosh [11], Gupta and
Nadarajah [12], Gupta and Nagar [13, 14], Gupta, Orozco-
Castañeda and Nagar [15], Mathai [16], Nadarajah and
Kotz [17, 18], Nagar, Arashi and Nadarajah [19], Na-
gar, Nadarajah and Okorie [20], Orozco-Castañeda, Nagar
and Gupta [21], and Semenikhine, Furman and Su [22].
These distributions have attracted useful applications in
several areas; for example, in the modeling of the pro-
portions of substances in a mixture, brand shares, i.e., the
proportions of brands of some consumer product that are
bought by customers, proportions of the electorate voting
for the candidate in a two-candidate election and the depen-
dence between two soil strength parameters, and hydrology.
They’ve also been widely used as a prior in Bayesian statis-
tics.

Bivariate distributions have also been applied in ar-
eas such as physics, economics, engineering, risk analy-
sis, and medicine. For interesting real life applications
the reader is referred to Alsayed and Manzi [23], Dana-
her and Smith [24], Li et al. [25], Makanda and Shaw [26],
Takeuchi [27], and references therein.

Arnold and Strauss [28] considered the most gen-
eral class of bivariate distributions such that both sets of
conditional densities are exponential (also see Nadarajah
and Choi [29]). They called their bivariate distribution

the bivariate exponential conditionals (BEC) distribution.
The conditionally specified bivariate gamma distribution
is given in Kotz, Balakrishnan and Johnson [30] (also see
Arnold, Castillo and Sarabia [1], Nadarajah [31]). For a re-
view on the construction of bivariate distributions by using
the conditional approach, the reader is referred to Arnold,
Castillo and Sarabia [1], and Balakrishnan and Lai [2, Chap-
ter 6].

In this article, we introduce a bivariate distribution of
positive random variables X and Y such that conditional
densities of X | y and Y | x are Kummer-gamma. The bi-
variate distribution defined in this article is closely con-
nected to gamma and Kummer-gamma distributions, and,
therefore we first define these distributions.

The random variable X is said to have a gamma distri-
bution with parameters (α, θ), denoted as X ∼ Ga(α, θ),
if its probability density function (pdf) is given by

xα−1 exp (−x/θ)
θαΓ(α)

, x > 0,

where α > 0 and θ > 0.
The random variable X is said to have a Kummer-

gamma distribution with parameters (α, γ, ξ), denoted as
X ∼ KG(α, γ, ξ), if its pdf is given by

xα−1 exp (−ξx) (1 + x)−γ

Γ(α)ψ (α, α− γ + 1; ξ)
, x > 0,

where α > 0, ξ > 0, −∞ < γ < ∞, and ψ is
the confluent hypergeometric functions of the second kind
(also known as Kummer’s function of the second kind, Tri-
comi function, or Gordon function), see Luke [32]. The
Kummer-gamma distribution is an extension of gamma dis-
tribution and for α < 1 (and certain values of γ) yields
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bimodal distribution. For properties and results on gamma
and Kummer-gamma distributions the reader is referred to
Gupta and Nagar [33], Gupta, Cardeño and Nagar [34],
Johnson, Kotz and Balakrishnan [35], and Koudou [36].

Consider the bivariate distribution of positive random
variablesX and Y defined by the pdf

f(x, y;α, β, ν, σ, ϕ)

= K(α, β, ν, σ, ϕ)xα−1yβ−1(x+ y)ν

× exp
[
−
(
x

σ
+
y

ϕ

)]
, x > 0, y > 0, (1)

where α > 0, β > 0, σ > 0, ϕ > 0 and ν ≥ 0. The nor-
malizing constant K(α, β, ν, σ, ϕ), by using Lemma A.1,
is given by

[K(α, β, ν, σ, ϕ)]−1

=
Γ(α)Γ(β)Γ(α+ β + ν)

ϕ−(α+β+ν)Γ(α+ β)

× 2F1

(
α, α+ β + ν;α+ β; 1− ϕ

σ

)
,
ϕ

σ
≤ 1

=
Γ(α)Γ(β)Γ(α+ β + ν)

σ−(α+β+ν)Γ(α+ β)

× 2F1

(
β, α+ β + ν;α+ β; 1− σ

ϕ

)
,
σ

ϕ
< 1.

From (1), by integrating suitably, the marginal densities of
X and Y can be derived as (see Theorem 2.2 and Theo-
rem 2.3),

K(α, β, ν, σ, ϕ)Γ(β)xα+β+ν−1 exp
(
−x
σ

)
× ψ

(
β, β + ν + 1;

x

ϕ

)
, x > 0 (2)

and

K(α, β, ν, σ, ϕ)Γ(α)yα+β+ν−1 exp
(
−y
ϕ

)
× ψ

(
α, α+ ν + 1;

y

σ

)
, y > 0, (3)

respectively. Observe that the densities ofX and Y are not
gamma and have an additional factor containing the conflu-
ent hypergeometric function and can be treated close allies
of the gamma distribution. By using (1) and (2), the condi-
tional density ofX | y is obtained as

xα−1y−(α+ν)(y + x)ν exp(−x/σ)
Γ(α)ψ(α, α+ ν + 1; y/σ)

, x > 0. (4)

Likewise, the use of (1) and (3) yields the conditional den-
sity of Y |x as

yβ−1x−(β+ν)(x+ y)ν exp(−y/ϕ)
Γ(β)ψ(β, β + ν + 1;x/ϕ)

, y > 0. (5)

From (4) and (5), it is clear that conditional distributions
of X |y and Y |x are Kummer-gamma. Thus, we call the
bivariate distribution defined by the density (1) the condi-
tionally specified bivariate Kummer-gamma (CSBKG) dis-
tribution. This distribution can also be referred to as the bi-
variate Kummer-gamma conditionals distribution. Further,
we will write (X,Y ) ∼ CSBKG(α, β, ν, σ, ϕ) if the joint
density ofX andY is given by (1). The CSBKGmodelmay
serve as an alternative to many existing bivariate distribu-
tions with support on (0,∞)× (0,∞) and can have possi-
ble applications in areas such as cross-over trials, life test-
ing, hydrology, reliability theory, renewal processes, and
stochastic routing problems (see Nadarajah and Kotz [18]).

In this article, in Section 2, we study several properties
such as marginal and conditional distributions, joint mo-
ments, correlation, and mixture representation of the bi-
variate distribution defined by the density (1). We also
derive distributions of X + Y and X/(X + Y ), where
(X,Y ) ∼ CSBKG(α, β, ν, σ, ϕ). In Section 4, entropies
such as Renyi and Shannon are derived for the conditionally
specified bivariate Kummer-gamma distribution defined in
this article. Finally, in the Appendix, several known results
used in this article are given.

2 Properties
In this section we study several properties of the condition-
ally specified bivariate Kummer-gamma distribution de-
fined in Section 1.

First, we briefly discuss the shape of (1) for σ = ϕ. The
first derivatives of ln f(x, y;α, β, ν, σ, σ)with respect to x
and y are

fx(x, y) =
∂ ln f(x, y;α, β, ν, σ, σ)

∂x

=
α− 1

x
+

ν

x+ y
− 1

σ
(6)

and

fy(x, y) =
∂ ln f(x, y;α, β, ν, σ, σ)

∂y

=
β − 1

y
+

ν

x+ y
− 1

σ
(7)

respectively. Setting (6) and (7) to zero, one can compute
stationary point of (1) as (a, b), a = (α − 1)(α + β +
ν − 2)σ/(α + β − 2), b = (β − 1)(α + β + ν −
2)σ/(α + β − 2). Computing second order derivatives of
ln f(x, y;α, β, ν, σ, σ), from (6) and (7), we get

fxx(x, y) =
∂2 ln f(x, y;α, β, ν, σ, σ)

∂x2

= −α− 1

x2
− ν

(x+ y)2
, (8)
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fxy(x, y) =
∂2 ln f(x, y;α, β, ν, σ, σ)

∂x∂y

= − ν

(x+ y)2
, (9)

and

fyy(x, y) =
∂2 ln f(x, y;α, β, ν, σ, σ)

∂y2

= −β − 1

y2
− ν

(x+ y)2
. (10)

Further, from (8), (9) and (10), we get

fxx(a, b) = − (α+ β − 2)2 + (α− 1)ν

(α− 1)(α+ β + ν − 2)2σ2
,

fxy(a, b) = − ν

(α+ β + ν − 2)2σ2
,

fyy(a, b) = − (α+ β − 2)2 + (β − 1)ν

(β − 1)(α+ β + ν − 2)2σ2

and

fxx(a, b)fyy(a, b)− [fxy(a, b)]
2

=
(α+ β − 2)3

(α− 1)(β − 1)(α+ β + ν − 2)3σ4
.

Now, observe that
• If α > 1, β > 1 and α + β + ν > 2, then
fxx(a, b)fyy(a, b) − [fxy(a, b)]

2 > 0, fxx(a, b) < 0
and fyy(a, b) < 0 and therefore (a, b) is a maximum
point.

• If α > 1, β > 1 and 0 < α + β + ν < 2, then
fxx(a, b)fyy(a, b) − [fxy(a, b)]

2 < 0, and therefore
(a, b) is a saddle point.

• If α > 1, β < 1, α + β < 2 and 0 < α + β +
ν < 2, then fxx(a, b)fyy(a, b) − [fxy(a, b)]

2 < 0,
and therefore (a, b) is a saddle point.

• If α > 1, β < 1, α+ β < 2 and α+ β+ ν > 2, then
fxx(a, b)fyy(a, b) − [fxy(a, b)]

2 > 0, and therefore
(a, b) is a relative maximum.

• If α < 1, β > 1, α+ β < 2 and α+ β+ ν > 2, then
fxx(a, b)fyy(a, b) − [fxy(a, b)]

2 > 0, and therefore
(a, b) is a relative maximum.

Figure 1 illustrates the shape of the pdf (1) for selected val-
ues of α, β, ν, σ and ϕ. Here one can appreciate the wide
range of shapes that result from the bivariate density defined
by (1).

For a non-negative integer ν, we can write (1) as a linear
combination of the product of gamma densities; that is

ν∑
j=0

Cj

(
ν

j

)
fX(x;α+ j, σ)fY (y;β + ν − j, ϕ), (11)

where x > 0 and y > 0 with

Cj = K(α, β, ν, σ, ϕ)σα+jϕβ+ν−jΓ(α+j)Γ(β+ν−j).

Further, for ν = 0, the random variablesX and Y are inde-
pendent each having gamma distribution. Thus, the distri-
bution defined by the density (1) is a bivariate generaliza-
tion of the gamma distribution.

A distribution is said to be negatively likelihood ratio
dependent if the density f(x, y) satisfies

f(x1, y1)f(x2, y2) ≤ f(x1, y2)f(x2, y1)

(Lehmann [37], Tong [38]). In the case of conditionally
specified bivariate Kummer-gamma distribution the above
inequality reduces to

(x1 + y1)(x2 + y2) < (x1 + y2)(x2 + y1), ν > 0

which clearly holds. Hence, for ν > 0, the bivariate dis-
tribution defined by the density (1) is negatively likelihood
ratio dependent.

Theorem 2.1. Let (X,Y ) ∼ CSBKG(α, β, ν, σ, ϕ), and
define W = X/(X + Y ) and S = X + Y . Then, the
density of S is given by

K(α, β, ν, σ, ϕ)
Γ(α)Γ(β)

Γ(α+ β)
sα+β+ν−1 exp

(
− s

ϕ

)
× 1F1

(
α;α+ β;

(
1

ϕ
− 1

σ

)
s

)
, s > 0

and the density ofW is given by

K(α, β, ν, σ, ϕ)Γ(α+ β + ν)

× wα−1(1− w)β−1

[w/σ + (1− w)/ϕ]α+β+ν
, 0 < w < 1,

where 1F1 is the confluent hypergeometric function of the
first kind.

Proof. Substituting x = ws and y = s(1 − w) with the
Jacobian J(x, y → w, s) = s, in the joint density of X
and Y , we obtain the joint density ofW and S as

K(α, β, ν, σ, ϕ)sα+β+ν−1wα−1(1− w)β−1

× exp
[
−
(
w

σ
+

1− w

ϕ

)
s

]
, (12)

where 0 < s < 1 and 0 < w < 1. Now, integrating ap-
propriately by using the integral representation of confluent
hypergeometric function (A.6), we obtain marginal densi-
ties of S ansW .

Corollary 2.1.1. The density of R = X/Y is given by

K(α, β, ν, σ, ϕ)Γ(α+ β + ν)

× rα−1(1 + r)ν

(r/σ + 1/ϕ)α+β+ν
, r > 0.
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(α, β, ν, σ, ϕ) = (1, 2, 3, 5, 4) (α, β, ν, σ, ϕ) = (1, 2, 7, 15, 6) (α, β, ν, σ, ϕ) = (4, 5, 0.5, 1, 0.5)

(α, β, ν, σ, ϕ) = (8, 9, 0.2, 2, 0.7) (α, β, ν, σ, ϕ) = (1, 2, 3, 5, 4) (α, β, ν, σ, ϕ) = (1, 2, 7, 15, 6)

(α, β, ν, σ, ϕ) = (4, 5, 0.5, 1, 0.5) (α, β, ν, σ, ϕ) = (8, 9, 0.2, 2, 0.7) (α, β, ν, σ, ϕ) = (10, 5, 6, 4, 15)

Figure 1: Plots of the pdf (1) for some selected values of parameters.

Proof. Use the transformationW = R/(1+R) in the den-
sity ofW given in the Theorem 2.1.

Corollary 2.1.2. If σ = ϕ, then, the density of S is given
by

sα+β+ν−1 exp (−s/σ)
σα+β+νΓ(α+ β)

, s > 0.

The density ofW is given by

Γ(α+ β)

Γ(α)Γ(β)
wα−1(1− w)β−1, 0 < w < 1

and the density of R is

Γ(α+ β)

Γ(α)Γ(β)

rα−1

(1 + r)α+β
, r > 0.

Proof. Substitute σ = ϕ in the Theorem 2.1 and Corol-
lary 2.1.1.

Corollary 2.1.3. Let X and Y be independent X ∼
Ga(α, σ) and Y ∼ Ga(β, ϕ). Then, the density of S is
given by

sα+β−1

σαϕβΓ(α+ β)
exp

(
− s

ϕ

)
× 1F1

(
α;α+ β;

(
1

ϕ
− 1

σ

)
s

)
, s > 0.

The density ofW is given by

Γ(α+ β)

σαϕβΓ(α)Γ(β)

wα−1(1− w)β−1

[w/σ + (1− w)/ϕ]α+β
, 0 < w < 1

and the density of R is

Γ(α+ β)

σαϕβΓ(α)Γ(β)

rα−1

(r/σ + 1/ϕ)α+β
, r > 0.

Proof. Substitute ν = 0 in the Theorem 2.1 and the Corol-
lary 2.1.1.
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By using the above theorem and (A.5), it is straightfor-
ward to show that

E(Sr) =
ϕrΓ(α+ β + ν + r)

Γ(α+ β + ν)

× 2F1(α, α+ β + ν + r;α+ β; 1− ϕ/σ)

2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)
,

if ϕ ≤ σ and

E(Sr) =
σrΓ(α+ β + ν + r)

Γ(α+ β + ν)

× 2F1(α, α+ β + ν + r;α+ β; 1− σ/ϕ)

2F1(α, α+ β + ν;α+ β; 1− σ/ϕ)
,

if ϕ > σ. Further, by using the density of W given in
Theorem 2.1, we derive E(W r) as

E(W r) = K(α, β, ν, σ, ϕ)Γ(α+ β + ν)

×
∫ 1

0

wα+r−1(1− w)β−1

[w/σ + (1− w)/ϕ]α+β+ν
dw.

Now, writing

w

σ
+

1− w

ϕ
=


[
1−

(
1− ϕ

σ

)
w
]

1
ϕ
, ϕ

σ
≤ 1[

1−
(
1− σ

ϕ

)
(1− w)

]
1
σ
, σ

ϕ
< 1,

and integrating w by using (A.7), we get

E(W r) =
Γ(α+ r)Γ(α+ β)

Γ(α)Γ(α+ β + r)

× 2F1(α+r, α+β+ν+r;α+β; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

ϕ/σ ≤ 1,

=
Γ(β + r)Γ(α+ β)

Γ(β)Γ(α+ β + r)

× 2F1(β+r, α+β+ν+r;α+β; 1−σ/ϕ)
2F1(β, α+ β + ν;α+ β; 1− σ/ϕ)

,

ϕ/σ > 1.

In next two theorems, we derive marginal distributions
ofX and Y . It is interesting to note that these marginal dis-
tributions do not belong to the gamma family and differ by
an additional factor containing the confluent hypergeomet-
ric function ψ. Figure 2 and Figure 3 illustrate the shape
of the marginal denisity ofX for selected of α, β, ν, σ and
ϕ. It can be observed that, for certain values of parameters,
the marginal density of X tends to symmetry. A graphical
comparison of the marginal density of X with the gamma
density is also given in Figure 2 and Figure 3. It can also
be seen that, compared to the gamma density, the curves of
the marginal density of X are taller and have thinner tails.
Further, the median of the marginal density ofX is smaller
than that of the gamma density.

Theorem 2.2. If (X,Y ) ∼ CSBKG(α, β, ν, σ, ϕ), then
the marginal density ofX is given by

K(α, β, ν, σ, ϕ)Γ(β)xα+β+ν−1 exp
(
−x
σ

)
× ψ

(
β, β + ν + 1,

x

ϕ

)
, x > 0,

whereψ is the confluent hypergeometric function of the sec-
ond kind.

Proof. To find the marginal density of X , we integrate (1)
with respect to y to get

K(α, β, ν, σ, ϕ)xα−1 exp
(
−x
σ

)
×
∫ ∞

0

yβ−1(x+ y)ν exp
(
−y
ϕ

)
dy.

Substituting z = y/x with dy = x dz above, one obtains

K(α, β, ν, σ, ϕ)xα+β+ν−1 exp
(
−x
σ

)
×
∫ ∞

0

zβ−1(1 + z)ν exp
(
−xz
ϕ

)
dz.

Now, the desired result is obtained by using (A.8).

Theorem 2.3. If (X,Y ) ∼ CSBKG(α, β, ν, σ, ϕ), then
the marginal density of Y is given by

K(α, β, ν, σ, ϕ)Γ(α)yα+β+ν−1 exp
(
−y
ϕ

)
× ψ

(
α, α+ ν + 1,

y

σ

)
, y > 0.

Proof. Similar to the proof of the Theorem 2.2.

Using the above theorem, the conditional density func-
tion ofX given Y = y, y > 0, is obtained as

exp(−x/σ)xα−1(x+ y)ν

Γ(α)yα+νψ(α, α+ ν + 1, y/σ)
, x > 0.

Similarly, using Theorem 2.2, the conditional density func-
tion of Y givenX = x, x > 0, is derived as

exp(−y/ϕ)yβ−1(x+ y)ν

Γ(β)xβ+νψ(β, β + ν + 1, x/ϕ)
, y > 0.

Further, using conditional densities given above, we derive

E(Xr | y) = yrΓ(α+r)ψ(α+r, α+ν+r+1, y/σ)

Γ(α)ψ(α, α+ ν + 1, y/σ)

and

E(Y r | x) = xrΓ(β+r)ψ(β+r, α+ν+r+1, x/ϕ)

Γ(β)ψ(β, β + ν + 1, x/ϕ)
.
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Figure 2: Comparison of the marginal density of X with the gamma density. Plots 1, 2, 3 and 4 are drawn by using the
density ofX given in Theorem 2.2 for (α, β, ν, σ, ϕ) = (1, 2, 7, 15, ϕ) with ϕ/σ < 1, and the plot of the gamma density
with parameters (1 + 2 + 7, 15) is given by 5.
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Figure 3: comparison of the marginal density of X with the gamma density. Plots 1, 2, 3 and 4 are drawn by using the
density of X given in theorem 2.2 for (α, β, ν, σ, ϕ) = (5, 2, 4, 3, ϕ) with σ/ϕ < 1, and the plot of the gamma density
with parameters (5 + 2 + 4, 3) is given by 5.

Also, using (1), the joint (r, s)-th moment is obtained as

E(XrY s) = K(α, β, ν, σ, ϕ)

∫ ∞

0

∫ ∞

0

xα+r−1yβ+s−1

(x+ y)
ν exp

[
−
(
x

σ
+
y

ϕ

)]
dy dx

=
K(α, β, ν, σ, ϕ)

K(α+ r, β + s, ν, σ, ϕ)
.

Further, substituting forK(α, β, ν, σ, ϕ), one gets

E(XrY s)

= ϕr+sΓ(α+ r)Γ(β + s)Γ(α+ β + ν + r + s)Γ(α+ β)

Γ(α)Γ(β)Γ(α+ β + ν)Γ(α+ β + r + s)

× 2F1(α+r, α+β+ν+r+s;α+β+r+s; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

ϕ/σ ≤ 1,

= σr+sΓ(α+ r)Γ(β + s)Γ(α+ β + ν + r + s)Γ(α+ β)

Γ(α)Γ(β)Γ(α+ β + ν)Γ(α+ β + r + s)

× 2F1(β+s, α+β+ν+r+s;α+β+r+s; 1−σ/ϕ)
2F1(β, α+ β + ν;α+ β; 1− σ/ϕ)

,

σ/ϕ < 1,

where α+ r > 0, β + s > 0 and α+ β + ν + r+ s > 0.
Now, substituting appropriately, we obtain, for ϕ/σ ≤ 1,

E[(XY )h]

= ϕ2hΓ(α+ h)Γ(β + h)Γ(α+ β + ν + 2h)Γ(α+ β)

Γ(α)Γ(β)Γ(α+ β + ν)Γ(α+ β + 2h)

× 2F1(α+h, α+β+ν+2h;α+β+2h; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,
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E(X) = ϕ
α(α+ β + ν)

α+ β

× 2F1(α+1, α+β+ν+1;α+β+1; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

E(Y ) = ϕ
β(α+ β + ν)

α+ β

× 2F1(α, α+β+ν+1;α+β+1; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

E(X2) = ϕ2α(α+ 1)(α+ β + ν)(α+ β + ν + 1)

(α+ β)(α+ β + 1)

× 2F1(α+2, α+β+ν+2;α+β+2; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

E(Y 2) = ϕ2β(β + 1)(α+ β + ν)(α+ β + ν + 1)

(α+ β)(α+ β + 1)

× 2F1(α, α+β+ν+2;α+β+2; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

E(XY ) = ϕ2αβ(α+ β + ν)(α+ β + ν + 1)

(α+ β)(α+ β + 1)

× 2F1(α+1, α+β+ν+2;α+β+2; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

,

Var(X) = ϕ2α(α+ β + ν)

α+ β

[
(α+ 1)(α+ β + ν + 1)

α+ β + 1

× 2F1(α+2, α+β+ν+2;α+β+2; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

− α(α+ β + ν)

α+ β

×
{

2F1(α+1, α+β+ν+1;α+β+1; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

}2]
,

Var(Y ) = ϕ2β(α+ β + ν)

α+ β

[
(β + 1)(α+ β + ν + 1)

α+ β + 1

× 2F1(α, α+ β + ν + 2;α+ β + 2; 1− ϕ/σ)

2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

− β(α+ β + ν)

α+ β

×
{

2F1(α, α+β+ν+1;α+β+1; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

}2 ]
,

and

Cov(X,Y ) = ϕ2αβ(α+ β + ν)

α+ β

[
α+ β + ν + 1

α+ β + 1

× 2F1(α+1, α+β+ν+2;α+β+2; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

− α+ β + ν

α+ β

× 2F1(α+1, α+β+ν+1;α+β+1; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

× 2F1(α, α+β+ν+1;α+β+1; 1−ϕ/σ)
2F1(α, α+ β + ν;α+ β; 1− ϕ/σ)

]
.

Notice that E(XY ), E(X2), E(Y 2), E(X) and E(Y )
involve 2F1(a, b; c; z) which can be computed by using a
suitable software. Tables for correlations between X and
Y can also be prepared by using the definition

corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

3 Entropies
In this section, Renyi and Shannon entropies are derived for
the conditionally specified bivariate Kummer-gamma dis-
tribution defined in this article.

Let (X ,B,P) be a probability space. Consider a pdf
f associated with P , dominated by σ−finite measure µ on
X . The well-known Shannon entropy HSH(f) introduced
by Shannon [39] is define by

HSH(f) = −
∫
X
f(x) log f(x) dµ. (13)

One of the main extensions of the Shannon entropy was de-
fined by Rényi [40]. This generalized entropy measure is
given by

HR(η, f) =
logG(η)
1− η

(for η > 0 and η ̸= 1), (14)

where

G(η) =

∫
X
fηdµ.

The additional parameter η is used to describe complex be-
havior in probability models and the associated process un-
der study. Rényi entropy is monotonically decreasing in η,
while the Shannon entropy (13) is obtained from (14) for
η ↑ 1. These entropies have been used in information the-
ory, science and engineering. For details see Nadarajah and
Zografos [41], Zografos [42], and Zografos and Nadara-
jah [43].

First, we give the following lemma useful in deriving
these entropies.
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Lemma 3.1. Let g(α, β, ν, σ, ϕ) = limη→1 h(η), where

h(η) =
d
dη 2F1

(
η(α− 1) + 1, η(α+ β + ν − 2) + 2;

η(α+ β − 2) + 2; 1− ϕ

σ

)
.

with ϕ/σ < 1. Then,

g(α, β, ν, σ, ϕ)

=
∞∑
j=1

Γ(α+ j)Γ(α+ β + ν + j)Γ(α+ β)

Γ(α)Γ(α+ β + ν)Γ(α+ β + j)

(1− ϕ/σ)j

j!

[
(α− 1)ψ(α+ j)

+ (α+ β + ν − 2)ψ(α+ β + ν + j)

+ (α+ β − 2)ψ(α+ β)− (α− 1)ψ(α)

− (α+ β + ν − 2)ψ(α+ β + ν)

− (α+ β − 2)ψ(α+ β + j)
]
, (15)

where ψ(α) = Γ′(α)/Γ(α) is the digamma function.

Proof. Expanding 2F1 in series form, we write

h(η) =
d
dη

∞∑
j=0

∆j(η)
(1− ϕ/σ)j

j!

=
∞∑
j=0

[
d
dη

∆j(η)

]
(1− ϕ/σ)j

j!
, (16)

where

∆j(η) =
Γ[η(α− 1) + 1 + j]

Γ[η(α− 1) + 1]

× Γ[η(α+ β + ν − 2) + 2 + j]

Γ[η(α+ β + ν − 2) + 2]

× Γ[η(α+ β − 2) + 2]

Γ[η(α+ β − 2) + 2 + j]
.

Now, differentiating the logarithm of∆j(η) w.r.t. to η, one
obtains

d
dη

∆j(η)

= ∆j(η)
[
(α− 1)ψ(η(α− 1) + 1 + j)

+ (α+ β + ν − 2)ψ(η(α+ β + ν − 2)+2+ j)

+ (α+ β − 2)ψ(η(α+ β − 2) + 2)

− (α− 1)ψ(η(α− 1) + 1)

− (α+ β + ν − 2)ψ(η(α+ β + ν − 2) + 2)

− (α+ β − 2)ψ(η(α+ β − 2) + 2 + j)
]
. (17)

Finally, substituting (17) in (16) and taking η → 1, one
obtains the desired result.

Theorem 3.1. For the bivariate distribution defined by the
pdf (1), the Rényi and the Shannon entropies are given by

HR(η, f) =
1

1− η

[
η lnK(α, β, ν, σ, ϕ)

+ [η(α+ β + ν − 2) + 2] ln
(ϕ
η

)
+ lnΓ[η(α− 1) + 1] + lnΓ[η(β − 1) + 1]

+ lnΓ[η(α+ β + ν − 2) + 2]

− lnΓ[η(α+ β − 2) + 2]

+ ln 2F1

(
η(α−1)+1, η(α+β+ν−2)+2;

η(α+ β − 2) + 2; 1− ϕ

σ

)]
and

HSH(f) = − lnK(α, β, ν, σ, ϕ)

− [(α− 1)ψ(α) + (β − 1)ψ(β)

+ (α+ β + ν − 2)ψ(α+ β + ν)

− (α+ β − 2)ψ(α+ β)]

− g(α, β, ν, σ, ϕ)

2F1 (α, α+ β + ν;α+ β; 1− ϕ/σ)
,

respectively, where ψ(α) = Γ′(α)/Γ(α) is the digamma
function and g(α, β, ν, σ, ϕ) is given by (15).

Proof. For η > 0 and η ̸= 1, using the joint density of X
and Y given by (1), we have

G(η) =

∫ ∞

0

∫ ∞

0

fη(x, y;α, β; ν;σ, ϕ) dy dx

= [K(α, β, ν, σ, ϕ)]η

×
∫ ∞

0

∫ ∞

0

xη(α−1)yη(β−1) (x+ y)
ην

exp
[
−η
(
x

σ
+
y

ϕ

)]
dy dx

=
[K(α, β, ν, σ, ϕ)]η

K(η(α−1)+1, η(β−1)+1, ην, σ/η, ϕ/η)

= [K(α, β, ν, σ, ϕ)]η
Γ[η(α+ β + ν − 2) + 2]

Γ[η(α+ β − 2) + 2]

× Γ[η(α− 1) + 1]Γ[η(β − 1) + 1]

(ϕ/η)−η(α+β+ν−2)−2

× 2F1

(
η(α− 1) + 1, η(α+β+ν−2)+2;

η(α+ β − 2) + 2; 1− ϕ

σ

)
,

where the last line has been obtained by using (A.9). Now,
taking logarithm of G(η) and using (14) we getHR(η, f).
The Shannon entropy is obtained fromHR(η, f) by taking
η ↑ 1 and using L’Hopital’s rule.

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.21

Daya K. Nagar, Edwin Zarrazola, 
Alejandro Roldán-Correa

E-ISSN: 2224-2880 203 Volume 20, 2021



4 Conclusion
We have considered a bivariate distribution of positive
random variables X and Y defined by (1). It has been
shown that conditional distributions of X |y and Y |x
are Kummer-gamma thereby naming the bivariate distri-
bution defined by (1) the conditionally specified bivariate
Kummer-gamma (CSBKG) distribution. The CSBKG dis-
tribution may serve as an alternative to many existing bi-
variate distributions defined on (0,∞)× (0,∞). By using
standard definitions and results, several properties of this
distribution have also been derived. The distributions of
X + Y and X/(X + Y ) have also been obtained by us-
ing transformation of variables. It is interesting to note that
most of the results (including the normalizing constant) de-
rived in this article involve the well know Gauss’ hyperge-
ometric function/confluent hypergeometric function stud-
ied extensively in the literature making the CSBKG model
mathematically and statistically interesting. The matrix
variate generalization of the CSBKG model is also a cap-
tivating topic to explore.

Appendix
The Pochammer symbol (a)n is defined by (a)n = a(a +
1) · · · (a+n− 1) = (a)n−1(a+n− 1) for n = 1, 2, . . . ,
and (a)0 = 1. The generalized hypergeometric function of
scalar argument is defined by

pFq (a1, . . . , ap; b1, . . . , bq; z)

=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
, (A.1)

where ai, i = 1, . . . , p; bj, j = 1, . . . , q are complex
numbers with suitable restrictions and z is a complex vari-
able. Conditions for the convergence of the series in (A.1)
are available in the literature, see Luke [32]. From (A.1) it
is easy to see that

1F1(a; c; z) =
∞∑
k=0

(a)k
(c)k

zk

k!
, (A.2)

and

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1. (A.3)

Also, under suitable conditions, we have (Luke [32, Eq.
3.6(10)]),∫ 1

0

zα−1(1− z)β−1
pFq(a1, . . . , ap; b1, . . . , bq; zy) dz

=
Γ(α)Γ(β)

Γ(α+ β)

× p+1Fq+1(a1, . . . , ap, α; b1, . . . , bq, α+β; y). (A.4)

and (Luke [32, Eq. 3.6(13)]),∫ ∞

0

exp(−δz)zα−1
pFq(a1, . . . , ap; b1, . . . , bq; zy) dz

= δ−αΓ(α)

× p+1Fq(a1, . . . , ap, α, α; b1, . . . , bq; δ
−1y). (A.5)

The integral representations of the confluent hypergeo-
metric function (first kind) and the Gauss hypergeometric
function are given as

1F1(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

×
∫ 1

0

ta−1(1− t)c−a−1 exp(zt) dt, (A.6)

and

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

×
∫ 1

0

ta−1(1− t)c−a−1

(1− zt)b
dt, (A.7)

respectively, where Re(a) > 0 and Re(c − a) > 0. Note
that, the series expansions for 1F1 and 2F1 given in (A.2)
and (A.3) can be obtained by expanding exp(zt) and (1 −
zt)−b, |zt| < 1, in (A.6) and (A.7) and integrating t.

The integral representations of the confluent hypergeo-
metric function of the second kind is defined by the integral

ψ(a, b, z) =
1

Γ(a)

∫ ∞

0

exp(−zt)ta−1(1 + t)b−a−1 dt,

Re(a) > 0. (A.8)

For properties and further results on these functions the
reader is referred to Luke [32].
Lemma A.1. Let

C(α, β, ν, σ, ϕ) =

∫ ∞

0

∫ ∞

0

xα−1yβ−1(x+ y)ν

exp
[
−
(
x

σ
+
y

ϕ

)]
dx dy, (A.9)

where α > 0, β > 0, σ > 0, ϕ > 0 and α + β + ν > 0.
Then

C(α, β, ν, σ, ϕ) =
Γ(α)Γ(β)Γ(α+ β + ν)

ϕ−(α+β+ν)Γ(α+ β)

× 2F1

(
α, α+β+ν;α+β; 1− ϕ

σ

)
for ϕ/σ < 1 and

C(α, β, ν, σ, ϕ) =
Γ(α)Γ(β)Γ(α+ β + ν)

σ−(α+β+ν)Γ(α+ β)

× 2F1

(
β, α+β+ν;α+β; 1− σ

ϕ

)
for σ/ϕ < 1.
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Proof. Substituting s = x + y and r = x/(x + y) with
dxdy = sdsdr in (A.9) and integrating s, one gets

C(α, β, ν, σ, ϕ) = Γ(α+ β + ν)

∫ 1

0

rα−1(1− r)β−1

(
r

σ
+

1−r
ϕ

)−(α+β+ν)

dr. (A.10)

Now, writing(
r

σ
+

1− r

ϕ

)−(α+β+ν)

= ϕα+β+ν

[
1− r

(
1− ϕ

σ

)]−(α+β+ν)

,
ϕ

σ
< 1

and integrating r by using (A.7) we get the result. Further
if ϕ/σ > 1, then σ/ϕ < 1 and we write(

r

σ
+

1− r

ϕ

)−(α+β+ν)

= σα+β+ν

[
1− (1−r)

(
1− σ

ϕ

)]−(α+β+ν)

,
σ

ϕ
< 1

and (A.10) becomes

C(α, β, ν, σ, ϕ)

= σα+β+νΓ(α+ β + ν)

∫ 1

0

rα−1(1− r)β−1

[
1− (1− r)

(
1− σ

ϕ

)]−(α+β+ν)

dr.

Now, application of (A.7) yield the desired result.
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